# Bambata pottery and Western Bantu: re-interpreting the Early Iron Age in southern Africa

## Thomas N. Huffman

School of Geography, Archaeology & Environmental Studies, University of the Witwatersrand, Johannesburg; thomas.huffman@wits.ac.za

#### ABSTRACT

New evidence indicates that *Bambata* pottery is part of the Kay Ladio Group centred in the Democratic Republic of Congo, rather than a facies of the **KALUNDU TRADITION**. This means that Western Bantu speakers produced the style. Other cornerstones of previous interpretations remain the same: *Bambata* derives from *Benfica* and it was spread to the southeast along hunter-gatherer trade networks. The distribution of *Bambata* also roughly marks the spread of Western Bantu-speaking people. In the Mount Buhwa area of Zimbabwe, Benfica people interacted with Eastern Bantu who produced *Silver Leaves* (**Kwale**), *Ziwa/ Gokomere* (**Nkope**) and *Happy Rest* (**KALUNDU**) pottery: thus, this was the confluence of four moving frontiers. These frontiers demonstrate the complexity of interaction, which in turn has linguistic ramifications.

KEY WORDS: Bambata pottery, Bantu-speaking farmers, Buhwa area, southern Africa.

The place of *Bambata* pottery in the archaeological sequence in southern Africa has been contentious for over 50 years (e.g. Robinson 1966a; Walker 1983; Huffman 1994, 2005, 2007; Sadr 2003). First described from Bambata Cave in the Matopo (Motobo) Hills (Schofield 1941), researchers have ascribed the pottery to the spread of Khoisan pastoralists, to trade along hunter-gatherer networks as well as to the advent of Bantu farmers. There is no support for a link to Khoe pastoralism, but the other proposals have merit. Today, *Bambata A* refers to the thin pottery found in hunter-gatherer contexts and *Bambata B* to the thicker pottery in farming contexts, both with the same stylistic attributes (Huffman 2005).

The first step in evaluating the place of *Bambata* is to determine the origins of the ceramic style. Until recently, evidence suggested that *Benfica* (dos Santos Júnior & Ervedosa 1970) near Luanda generated *Bambata A*. In a comprehensive classification of Iron Age ceramics, *Benfica* was placed in the **Benfica sub-Branch** of the **KALUNDU TRADITION** (Huffman 2007: 212–15, 346–55). If accurate, the producers of *Benfica* would have spoken some early dialect of Eastern Bantu because of their membership in Phillipson's (1977) **Chifumbaze Complex**, the overarching category for Early Iron Age (EIA) ceramics in East and southern Africa.

New research in Central Africa, however, places *Benfica* (also called Cabolombo, Valdeyron & da Silva Domingos 2012) with the Kay Ladio Group (Fig. 1), centred in the westernmost province of the Democratic Republic of Congo (DRC) (Clist, de Maret & Bostoen 2018: 45–6; Clist, Hubau et al. 2019; Clist, Kaumba et al. 2019). This new assignment means that *Benfica* is a facies of a **Benfica Branch** of an unknown EIA Central African Tradition. This new assignment also means that early Western Bantu speakers produced the style. To consider the ramifications of these new conclusions, I begin with research in Central Africa.

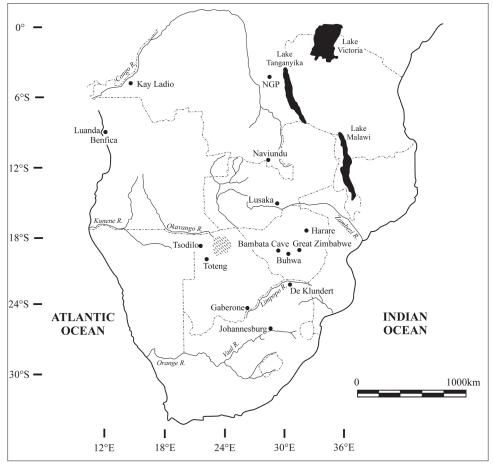



Fig. 1. Important sites mentioned in the text.

# KAY LADIO GROUP

The Kay Ladio Group was first identified in the Kongo-Central Province from surface collections (de Maret 1972: 69–70, 101; de Maret 1982: 80) and a reexamination of pottery excavated by M. Bequaert in 1950–51 (Clist 1982: 147–58). Excavations at Sakuzi in 1984 (de Maret 1990: 450, 453) yielded the first radiocarbon dates (Table 1) and evidence for metallurgy. Further excavations at various sites (Clist, Hubau et al. 2019; Clist, Kaumba et al. 2019), such as Kindu and Bu, yielded more metallurgical evidence (tuyères and slag), as well as carbonized oil palm (*Elaeis guineensis*) and bush candle (*Canarium schweinfurthii*) seeds, polished stone axes/hoes and Kay Ladio pottery.

To assess the Kay Ladio dates, we need to consider the human events they purport to date. First, because of ephemeral building materials, a single village occupation is unlikely to have lasted for 100 years. In addition, people often move a village for such cultural reasons as the death of a leader, female infertility, increase in illness and bad dreams (e.g. Merriam 1974: 42). Moreover, it is most unlikely that a date that is three

or more standard errors away from the medium is statistically relevant. The datum established at the Kay Ladio component at Mbanza (1739  $\pm$  25 to 1767  $\pm$  27 BP), for instance, means that the earliest dates at Nduizi (1942  $\pm$  25 BP) and Sakuzi (1900  $\pm$  50 BP) should be disregarded. They probably date an earlier Ngovo (de Maret 1986) occupation. Likewise, the more recent dates at Nduizi (1673  $\pm$  26 BP) and Sakuzi

TABLE 1

Benfica and Kitala radiocarbon dates.

| Site                             | Laboratory number | BP ± 1σ                | CalSH20 1σ spans                      | Intercepts            |
|----------------------------------|-------------------|------------------------|---------------------------------------|-----------------------|
| <b>Kitala</b><br>T32014/B1/28 cm | Poz-69053         | 1665 ± 30              | 387–403, 408–444                      | 395, 426              |
| T62015/A1/pit 1, 50–60 cm        | Poz-75420         | 1680 ± 30              | 366–435, 456–465                      | 401, 461              |
| T22015/A2/pit 1, 44 cm           | Pos-75419         | 1710±30                | 343–349, 361–416                      | 346, 389              |
| T22014/A1/33 cm                  | Poz-69263         | 2230±30                |                                       |                       |
| <b>BU</b><br>T1/B1/10–20 cm      | Poz-80293         | 1700 ± 30              | 363–420                               | 392                   |
| <b>Mbanza</b> F8/40–50 cm        | RICH-26751        | 1726 ± 27              | 340–355, 357–394<br>396–412           | 348, 376<br>404       |
| F11/20–30 cm                     | RICH-26786        | 1739 ± 25              | 257–272, 281–288,<br>338–387, 403–408 | 265, 285. 363,<br>406 |
| F5/20–30 cm                      | RICH-26754        | 1740 ± 28              | 257–289, 338–386<br>404–408           | 273, 362, 406         |
| F3/20–39 cm                      | RICH-26753        | 1765 ± 26              | 253–298, 333–362                      | 276, 348              |
| <b>Kindu</b><br>T9/20–30 cm      | Poz-76920         | 1750 ± 30              | 254–296, 334–372<br>377–380           | 279, 353<br>379       |
| T9/pit1/50–60 cm                 | Poz-76921         | 1810±30                | 225–257, 279–280<br>289–338           | 241, 280<br>314       |
| Benfica T1/8                     | Lyon-4028         | 1715 ± 30              | 342–351, 360–415                      | 347, 388              |
| B/40 cm (shell)                  | Pta-1025          | 1760 ± 60              | 250–383                               | 317                   |
| 35–40 cm                         | Pta-212           | 1810±50                | 217–341, 353–358                      | 279, 356              |
| <b>Sakuzi</b><br>F7/20–30 cm     | RICH-26776        | <del>1661 ± 24</del>   |                                       |                       |
| F8/40 cm                         | RICH-26756        | 1767 ± 26              | 252–299, 331–345<br>347–362           | 276, 338<br>355       |
| F42/50–55 cm                     | Lv-1469           | 1780 ± 50              | 248–345, 347–362                      | 297, 355              |
| F2/30 cm                         | RICH-26775        | 1803 ± 25              | 244–257, 274–281<br>288–338           | 251, 278<br>313       |
| F20/10-45 cm                     | Lv-1468           | 1850 ± 70              | 122–255, 294–336                      | 189, 305              |
| F12/80–90cm                      | Lv-1470           | 1900 ± 50              |                                       |                       |
| Nduizi<br>F5/20–30 cm            | RICH-26750        | 1673 ± 26<br>(Kitala?) |                                       |                       |
| F4/40–50 cm                      | RICH-26758        | 1788 ± 29              | 249–258, 269–338                      | 251, 304              |
| F1/20–30 cm                      | RICH-26747        | 1873 ± 27              | 133–181, 200–226                      | 157, 212              |
| F7/10–20 cm                      | RICH-37608        | <del>1942 ± 25</del>   |                                       |                       |

(1661 ± 24 BP) may date a later occupation not apparent in the stratigraphy. One then calibrates the remaining dates: I apply the SHCal20 curve using Calib 8.10 (Stuiver & Reimer 1993; Hogg et al. 2020 available online at http://calib.org). Following Vogel (2000: 52), the intercepts of the calibrated spans represent the most likely dates for each village. With this procedure, Nduizi most likely dates to sometime between AD 157–304, Sakuzi to between AD 189–355, Kindu to between AD 241–379 and Mbanza to AD 265–406 (Table 1). Following the same procedure, the dates for Kitala range from AD 346 to 461 (see Clist, Kaumba et al. 2019 for eliminating Poz-69263). Although the dates overlap slightly, ceramic data indicate that Kay Ladio (± AD 150–350) developed into Kitala (AD 350–450) to form the Kay Ladio Group. In my terminology, Kay Ladio belongs to the *Benfica* facies, which is followed later by *Kitala*. Clist, Hubau et al. (2019: 19) conclude that the producers of Kay Ladio pottery probably spoke some early form of West-Coastal Bantu.

Methodologically, to trace the origins of various ceramic types, layouts and decorative elements, researchers need to know the variability in the parent facies. Unfortunately, Benfica is a deeply eroded shellfish-collection site that has yielded more than one ceramic facies. So, ceramics from early Kay Ladio sites are needed to provide a datum for the assemblage at Benfica. Together with pottery from the inland site of Quibaxe (de Sousa Martins 1976), Kay Lido and Benfica characterize the *Benfica* facies (Fig. 2). For our purposes, the most complicated jar type has a slightly everted rim with  $\pm 2$  horizontal lines in position 1 (immediately below the lip), a wide band of crosshatching, parallel lines or alternating triangles in position 2 (a long rim or neck), line of punctates in position 3 (neck/body junction) and wide band of alternating triangles in position 4 (body). The decorative positions follow Huffman (2007). Jars that lack decoration in position 3 but are otherwise the same as Type 1 are also characteristic. Bowls have a similar layout and sometimes lip decoration. These types account for much of *Bambata A*.

In contrast to *Bambata A* collections, however, it is noteworthy that combstamping almost never occurs in Kay Ladio (Bernard Clist pers comm., February 2021), and never as alternating hatched bands. Furthermore, jar rims are not thickened, as in **Chifumbaze** facies (Phillipson 1977: chapter 6), although bowl rims may be. These features have a bearing on the integrity of *Bambata A* as a facies.

# Bambata

Benfica dominates Bambata A collections in hunter-gatherer contexts (Schofield 1941) but does not include types with thickened combstamped rims (e.g. T2 in Huffman 2005) and multiple combstamped bands (e.g. T5 and T12). Thus, the 'stamped and channelled' vessels from Mandau Stream and Madiliyangwa (Robinson 1966a) are not Bambata and must have a different origin. Indeed, they are **Nkope** types, the central stream of the **Chifumbaze Complex**. This means that many Bambata collections do not represent a coherent facies but a mixture, showing that hunter-gatherers acquired vessels from different sources at different times.

The removal of **Nkope** types from *Bambata* changes the previous list (Huffman 2005: 62–3) and emphasizes the link to *Benfica*. Following the numerical system in the *Handbook* (Huffman 2007), the list now includes the following stylistic types (Fig. 3):

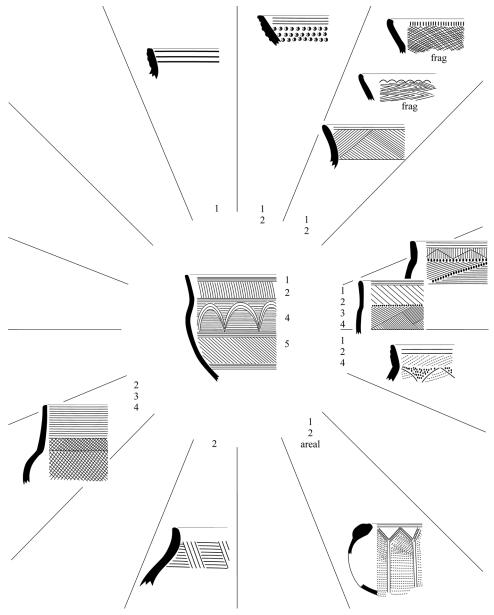



Fig. 2. Benfica facies (including Kay Ladio).

- Type 1, the most complex combination: incised hatching on the lip and in position 1, incised blocks of parallel lines over the remaining body
- Type 2, lines of punctates (or stabs) on lip and position 1
- Type 3A, incised hatching on lip and position 1, alternating incised blocks in position 2
- Type 3B, combstamping on lip and combstamped vertical lines or alternating combstamped blocks in position 2

- Type 4A, incised lines on lip and in position 1, horizontal stamping in position 2, alternating incised blocks of lines in position 3
- Type 4B, combstamped lines in position 1 and lip, combstamped hatching in position 2 and combstamped lines in position 3
- Type 4C, combstamped lines in position 1, incised crosshatching in position 2 and horizontal combstamped lines in position 3
- Type 5, bangle/cord/stamped impressions on lip and position 1, spaced punctates in position 2, line of stamping in position 3, band of stabs bordered by double punctates in position 4
- Type 6, combstamped line in position 1, long vertical combstamped lines in position 2 and combstamped hatched band in position 4
- Type 7A, incised blocks of lines in position 2
- Type 7B, alternating combstamped blocks in position 2
- Type 8A, combstamped hatching in position 2 and incised blocks of lines in position 3
- Type 8B, combstamped hatching in positions 2 and 3
- Type 9, incised triangle in position 4 (bowl)

All these types derive from *Benfica*. Like *Benfica*, *Bambata* A vessels have a long layout, starting with a small area below the lip (position 1) and then the entire neck (position 2) to the body junction (position 3). Sometimes lip decoration replaces position 1. As opposed to alternating triangles in *Benfica*, alternating blocks of lines are prevalent, both incised and combstamped, which is not a common *Benfica* technique. Some vessels have red ochre on the exterior surface. These features justify classifying *Bambata* as a separate facies from *Benfica*. I return to the use of combstamping shortly.

Technically, another important feature of *Bambata A* is its thinness (3–10 mm, clustering at 4–7 mm, Huffman 2005: table 1a). It is this thin because it has been scraped before firing, presumably to make it lighter for transport. Whatever the reason, manufacturing technique and other formal properties also exclude local hunter-gatherers as the producers: instead, *Bambata A* comes from a well-established potting tradition (see Huffman 2005: 63–5 for a discussion on this point). Note that thin-walled pottery that is not *Bambata* occurs in hunter-gatherer contexts in other regions of southern Africa (Sadr & Smith 1991; Sadr & Sampson 2006). Moreover, in the mid-Zambezi region, EIA Shongwe (perhaps *Kumadzulo*) and later Kalomo pottery occur in huntergatherer assemblages (Kinahan 2013). These other situations emphasize, once again, the multiple sources of pottery accessed by different hunter-gatherer communities through complicated exchange networks.

Although used by hunter-gatherers, the distribution of *Bambata A* most likely mirrors, albeit roughly, the spread of Benfica people. Indeed, so many individual vessels ( $\pm$  35–45) are represented in the assemblage at Bambata Cave that Walker (1983: 90) thought settlements of the original producers must be located nearby. This remains a viable interpretation. It follows that local hunter-gatherers were probably closely associated with Benfica farmers. I return to this point shortly.

Benfica dates (Table 1) provide another reason for disregarding the early date from Bambata Cave (Pta-3072, 2140 ± 60 BP, Walker 1983: 89), since Bambata pottery did not exist before the second century AD. Indeed, Benfica dates show that Bambata A must date to between cal. AD 150 and 350, which encompasses the dates for Bambata

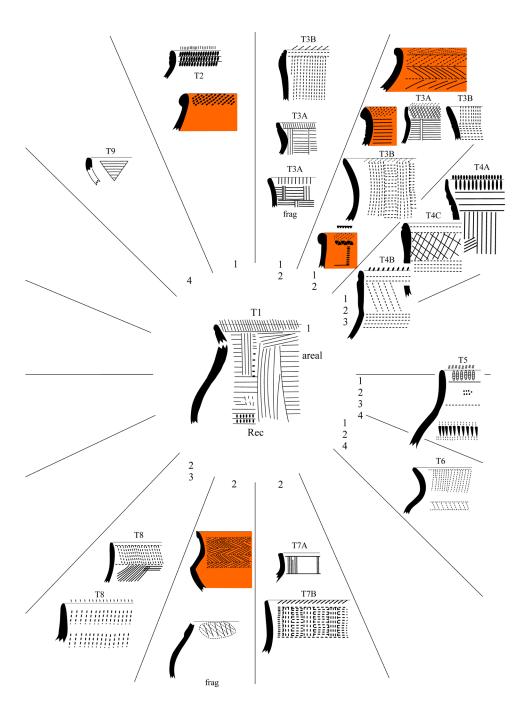



Fig. 3. Bambata A and B. Orange types belong to **Nkope**. From Huffman 2005.

pottery at Toteng I (Pta-5534,  $1820 \pm 50$  BP) and Toteng III (Beta-44965,  $1810 \pm 60$  BP and Beta 44966,  $1600 \pm 50$  BP) (Huffman 1994: 3–4).

The ceramics in Benfica homesteads and other farming contexts in southern Africa are called *Bambata B*. The most important difference is size: *Bambata B* has the same range of height and thickness (5–11 mm, clustering from 7–10, Huffman 2005: table 1b) as other EIA pottery in southern Africa. The vessels have therefore not been scraped thin for trade to hunter-gatherers.

The new research shows that the western route illustrated in the *Handbook* and elsewhere (e.g. Huffman 1989: 76, 2007: 212) actually marks the spread of Western Bantu, not the Western Stream of Eastern Bantu (i.e. **Kalundu Tradition**). Ironically, this is how several researchers interpreted the figure (e.g. Blench 2006: 137).

#### KALUNDU TRADITION

If *Benfica* was not part of **CHIFUMBAZE**, what route did Kalundu people (i.e. Western Stream) take from East to southern Africa? New research in Central Africa also has a bearing on this question.

A CRM project in Maniema Province in eastern DRC (Fourie 2012) found EIA **KALUNDU** pottery at site NGP-008 (Fig. 1). One bowl in particular has deep parallel grooves bordered by alternating ladder-stamping on the body: this is a regular type in the *Kalundu* facies (Huffman 1989: 35). Other elements on the pottery include false-relief-chevron punctates, as well as combstamped and incised crosshatched rims.

Site NGP-008 lies to the west of lakes Kivu and Tanganyika, between the East Congo mountains and the rainforest. Similarities with assemblages in the Luangwa Valley (Robertson 2000), at Kapwirimbwe (Phillipson 1969) and Kalundu (Huffman 1989) suggest Kalundu people travelled along the savanna corridor south through the DRC to the Zambezi (Fig. 4). This makes sense in that Nkope people moved south from the UREWE nucleus on the east side of the mountains. Although part of CHIFUMBAZE, the relationship of KALUNDU to UREWE remains for future consideration. KALUNDU still makes sense as a separate tradition.

As the *Sinoia* facies (Robinson 1966b; Huffman 1979) shows, some Kalundu people moved south of the Zambezi into northern Zimbabwe. To account for *Happy Rest* in South Africa, it is necessary to postulate a further movement south, to the west of the Great Dyke to beyond the Limpopo. This also makes sense with regard to **Nkope** as well, in that *Ziwa* appears to have entered Zimbabwe east of the Great Dyke.

These different routes lead us to consider the complex interactions between the different streams. I consider their chronological order in terms of *Benfica/Bambata*.

## INTERACTIONS

Four Streams

(1) Bambata collections in the Lake Ngami and Makgadikgadi area (#1 in Figs 4 and 5) include *Benfica* types made with combstamping (e.g. Huffman 1994: figs 2 & 3) which are not found in *Benfica* assemblages, including Kay Ladio. Perhaps this new technique derived from interaction with some facies in the Shongwe sequence in the Victoria Falls area (Vogel 1971).

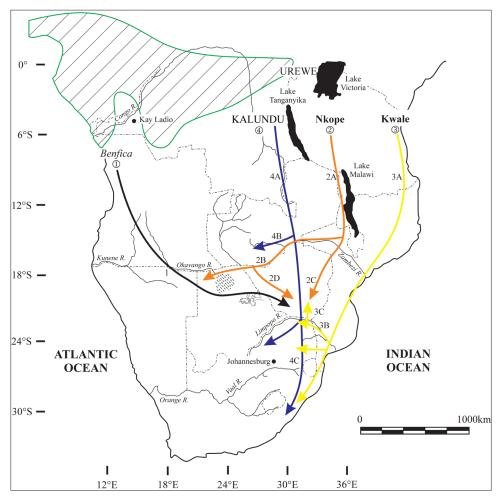



Fig. 4. Movement of *Benfica/Bambata* (1), **Nkope** (2), **Kwale** (3) and **Kalundu** (4) into southern Africa. Oblique hatching marks the Congo rainforest.

(2) Shongwe is part of the **Nkope Branch** (#2A) that moved up the Zambezi Valley by at least the fourth century AD (#2B) and into Zimbabwe as far south as the Limpopo (#2C). Ziwa sites in southwest Zimbabwe have combstamped *Bambata B* types, in this case in rain-control contexts, such as at Great Zimbabwe (Robinson 1961a). *Bambata B* types, furthermore, are part of *Gokomere* assemblages, such as at Mabveni (Robinson 1961b).

The new understanding of *Benfica/Bambata* changes the status of *Bisoli* (Huffman 2005, 2007: 216–8), a facies I originally thought derived from *Bambata B*. Rather, *Bisoli* belongs to **Nkope** and probably derives from an early movement of Shongwe people (#2D) from the Victoria Falls region. Some Shongwe people went on to occupy Nqoma in the Tsodilo Hills (Wilmsen 2011) and Matlapaneng, not far from Toteng (Denbow & Wilmsen 1986; Denbow 2014: 163–6, 169). Significantly, some Shongwe types occur at Toteng (e.g. Huffman 1994: figs 2 & 4), in particular jars

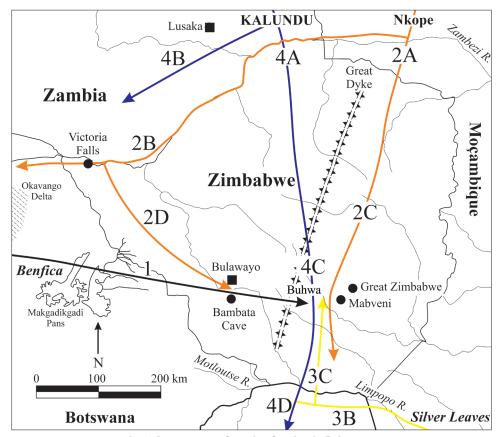



Fig. 5. Convergence of moving frontiers in Buhwa area.

with stamped or incised rolled rims (T1) and sub-carinated bowls with multiple bands (T4) (note this vessel was not found in the main midden). This sub-carinated profile also occurs in early **Nkope** pottery in the Bulawayo area of Zimbabwe (Robinson's 1985 Zhizo A), which pre-dates *Zhizo* (e.g. Huffman 1974: fig. 17, row 1, fig. 21, row 1\*). Similarly, Group 1A jars from Hippo Tooth, Cave of Bees and Whitewater (Huffman 1994: fig. 7) are also not *Bambata*. Several vessels of Group 1A have rim decoration extending onto the lip. This is not an **Nkope** or **KALUNDU** element but common in *Bambata*. Thus, there is ceramic evidence for interaction in both directions.

- (3) In the Mount Buhwa area of Zimbabwe, one *Bambata B* vessel with combstamping occurred in a Silver Leaves site (2030CB19), dating to about the fourth or fifth centuries AD (Klapwijk 1974; Huffman 1978, 2005). *Silver Leaves* (#3A) is part of the **Kwale Branch** that moved down the east coast and then inland (#3B). In the case of Mount Buhwa (#3C), Silver Leaves people were probably exploring their new landscape in search of iron ore deposits.
- (4) Gokomere differs from Ziwa in the use of multiple hatched bands, a concept derived from KALUNDU (#4A). I earlier thought Bambata was the source for this feature, but this is an error because multiple hatched bands do not exist in the earlier Benfica

and Kay Ladio assemblages. At Buhwa site CB23 multiple hatched bands occur along with *Silver Leaves* fluted bowls and show that the transition to *Gokomere* was earlier here than previously thought. **KALUNDU** also introduced this concept to the Victoria Falls area at about the same time (#4B), creating *Kumadzulo* (Vogel 1971).

As Kalundu people interacted with Ziwa in southwest Zimbabwe, they incorporated combstamping in their repertoire. This would explain the higher percentage of combstamping in *Happy Rest* assemblages (±35%) in South Africa (#4C) compared to *Kalundu* in Zambia (±2%). This higher percentage is probably why Phillipson (1977: 120, 123) thought *Happy Rest* was a southern extension of *Gokomere*. Moreover, Happy Rest potters appeared to have acquired lip decoration from *Bambata*, as Nkope potters did in the Bulawayo area.

In summary, Benfica people interacted first with Shongwe people and adopted combstamping. Alternatively, Benfica people may have acquired combstamping from interaction with the Naviundu group (Anciaux de Faveaux & de Maret 1984; Denbow 1990) in Central Africa. I prefer this alternative because the Quibaxe site in Angola has combstamping. For their part, Naviundu people also moved south as far as the Tsodilo Hills (Denbow & Wilmsen 1986; Denbow 2011, 2014: 166–70). If Naviundu was the source, Benfica's first interaction with farmers in southern Africa was with the makers of *Silver Leaves*, the earliest **Chifumbaze** pottery south of the Zambezi.

## Discrete societies

Although it is an archaeological convention to use the facies name as the name of the makers (e.g. Benfica people made *Benfica* pottery), this does not mean that a facies equals a tribe, chiefdom or ethnic unit where membership is dependent on acceptance by other members (e.g. Huffman 1980: 168). This may be the case in some limited geographical areas, such as the Limpopo Valley, but such correlations are not automatic. Rather, as long as the makers and users are the same, stylistic facies represent a macro-cultural group whose members share a worldview and common language (or related languages). Any further correlations must be demonstrated case by case.

In the case of Zina and Gokomere, the two facies belonged to the same macro-cultural group because their difference is due to interaction, not a change in stylistic structure. The main ceramic difference, multiple hatched bands, was the result of interaction with the ancestors of Happy Rest (Kalundu Tradition). The type of interaction was probably intermarriage. As is well known, a new bride should take material objects, including pottery, to her new home (e.g. Aschwanden 1982). The Merryhill assemblage near Marondera (Thornycroft 1975) shows that multiple bands were incorporated by Nkope people in different places at different times: it does not mean a discrete Gokomere society moved into the Marondera area from the south. It was the result of a process rather than a migration.

Intermarriage is probably how *Benfica* types also occur in *Silver Leaves*, *Ziwa* and *Gokomere* assemblages, and how *Silver Leaves* occurred at Buhwa CB23 along with *Ziwa* and proto-*Happy Rest*. It follows that all four groups of people (Benfica, Silver Leaves, Ziwa and proto-Happy Rest) must have lived in the Buhwa area at the same time. Buhwa, in fact, may have been unique in that it was the confluence of four moving frontiers (Fig. 5). The dates for *Silver Leaves*, *Ziwa* and *Bambata B* (Huffman 2007: 123, 135, 213)

suggest the four streams converged around Mount Buhwa sometime between cal. AD 350 and 400. This is earlier than expected for proto-*Happy Rest*.

The rich iron ore deposits, as well as prime agricultural land, made this area attractive to iron-using farmers, especially when they were exploring their new environments.

## Rain control

Benfica people also crossed the Limpopo, either as a group or as wives. A typical *Bambata B* pot was recently found in rain-control contexts on the farm De Klundert (2229BB1) not far from Mapungubwe in a *Happy Rest* area. Although found on the surface, it predates the Khami-phase ruin on the same hill (Fouché 1937: 21 and plate XIII). The vessel, of normal thickness (±10 mm), is the same type as at Great Zimbabwe and Howman's Ruin (2031AA2) (Fig. 6), both rain-control sites in a *Ziwa/Gokomere* area.

Much has been made of hunter-gatherer involvement in rain-control activities for farming communities. This relationship is well attested in the ethnography for the Eastern Cape (e.g. Jolly 1996; Dowson 1998), but under quite special circumstances that are not necessarily applicable to other regions (Whitelaw 2017: 116–19). Ethnographic evidence for Zimbabwe, in fact, excludes hunter-gatherers except as specialized assistants, collecting, for example, special plants from secret places (Murimbika 2006). Significantly, the *Bambata* pottery found in rain-control contexts, such as at De Klundert, is that made by Benfica people for their own use. Hence, the involvement of huntergatherers is not an issue here.

For farming communities in southern Africa, rain-control contexts were culturally significant, since rainfall determined agricultural success. Indeed, every chiefdom probably had professional rainmakers (following Schapera 1971). Normally, these professionals worked their magic in the village, but in times of severe drought (3 to 5 years in a row), they climbed special mountains to 'pull the rain down' (Murimbika 2006).

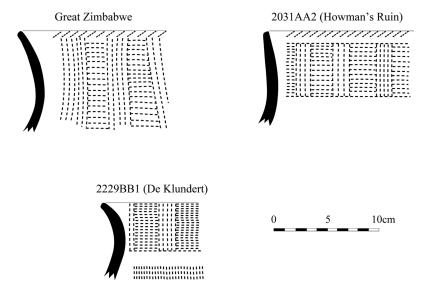



Fig. 6. Benfica/Bambata B vessels found in rain-control contexts at Great Zimbabwe, Howman's Ruin (2031AA2) and De Klundert (2229BB1).

Through magic by analogy, they tried to influence natural forces, such as making black smoke to call black rain clouds. As part of this symbolic nexus, pottery represented women whose fecundity was connected to the fertility of the earth. During rain-control rituals, 'female' pots were used to hold sacred beer, made by women, and the beer also had fertility connotations. Fortunately for archaeology, the pots were left *in situ* because once used in ritual, an object cannot be returned to a domestic context. It is unknown why other people, such as Ziwa and Happy Rest, would use *Benfica/Bambata* pots, but their foreign origin may have been a factor. In medicinal circumstances, for instance, foreigners are often credited with unbiased knowledge, untainted by local politics. Their Western Bantu origins, then, may have made Benfica people ritually important.

Consequently, Benfica people may have even been the rainmakers at Great Zimbabwe, Howman's Ruin and De Klundert. Even if rain control was different in Central Africa, Eastern Bantu would have taught Benfica people the appropriate rituals. As the dominant societies, then, Ziwa and Happy Rest people may have given Benfica people ritual roles as part of their incorporation (following Kopytoff 1989).

It is also significant that the *Bambata B* vessel at Buhwa CB19 was found in the collapsed rubble of a burnt granary along with typical fluted *Silver Leaves* bowls (Huffman 1978). Many other granaries were also burnt (Huffman et al. 2018). This is significant because people held responsible for a drought (because they broke pollution rules) must burn down their own granaries after the rainmaker burnt a temporary grainbin (to make black smoke) at the end of the hilltop rituals (Huffman 2009). Pots on rain-control hills are therefore linked to pots in the homestead. Thus, *Bambata B* pots in rain-control contexts, regardless of who performed the rituals, show that EIA Eastern Bantu communities were incorporating Benfica people. These rain-control contexts show that interaction led to integration.

This ceramic evidence has linguistic implications.

# HISTORICAL LINGUISTICS

The origins of the Bantu language family in West Africa is not in dispute, but subsequent routes of dispersal and internal relationships are highly contested. A division between Western and Eastern Bantu has been useful to archaeologists, but historical linguists are less enthusiastic because the divisions are unequal: Western is larger and more fragmented than Eastern, if Western exists at all (e.g. Ehret 2001). Some researchers (e.g. Grollemund et al. 2015) recognize three sub-divisions of Western (Central-Western, West-Western and South-Western) in addition to North-West Bantu. Others (e.g. Bostoen 2007) recognize four sub-divisions of Western (Lebonya/Boan, Inner Congo Basin, West-Coastal and South-West). In all classifications, Sotho-Tswana and Nguni are closely related and along with Shona belong to Narrow Eastern Bantu (all in Guthrie's 1967–71 Zone S). A larger Eastern Bantu division encompassing languages in Zambia, however, is not supported by linguistic, anthropological and archaeological data (Herbert & Huffman 1993; Huffman & Herbert 1994–95). The reason for the mis-match is because the full comparative method is usually not possible and historical classifications are based largely on lexicons.

From an archaeological perspective, Phillipson's (1977, 1985) **CHIFUMBAZE COMPLEX** represents the spread of Narrow Eastern Bantu. *Happy Rest*, for example, can be traced through its derivative facies to the Zimbabwe Culture and the Shona language (Huffman

2007), while EIA **Kwale** represents the Bantu base for Swahili (Chami 1998). Thus, all EIA Chifumbaze groups in the Buhwa area (Silver Leaves, Ziwa and proto-Happy Rest) most likely spoke variants of Eastern Bantu. Benfica people, on the other hand, spoke some type of Western Bantu.

As a rule, Western Bantu in Central Africa are and were matrilineal—hence, the so-called 'matrilineal belt' that extends across Zambia and Malawi (Murdock 1959: chapter 38). In the past, most Western Bantu did not herd cattle and those that did, such as the Ila, acquired them from Eastern Bantu neighbours (Smith & Dale 1920). Cattle, on the other hand, are well represented in Chifumbaze sites in southern Africa, including Mabveni (Huffman 1975) and Happy Rest (Plug & Badenhorst 2001). For these reasons, Benfica/Bambata people were probably not involved with the spread of cattle into southern Africa. Cattle remains at Toteng near Lake Ngami (Robbins et al. 2005: 673), for instance, predate *Bambata* pottery there by 200 years. Rather, as many researchers have long thought, Khoe pastoralists from East Africa brought sheep and cattle with them (e.g. Breton et al. 2014). This is why *Bambata* does not resemble Pastoral Neolithic pottery in East Africa (e.g. Collett & Robertshaw 1983) nor Cape Coastal pottery (e.g. Rudner 1968; Sadr & Sampson 2006): *Bambata A* was not made by pastoralists. The acquisition of domestic animals by LSA hunter-gatherers is thus a separate, and complicated, issue distinct from the spread of *Bambata A* pottery.

The faunal remains from the shell middens at Benfica show that the people were familiar with marine and lagoon environments. Other early sites in Central Africa, located along the edges of floodplains (e.g. de Maret 1986; Clist, Kaumba et al. 2019), point to river fishing as an important subsistence activity. Perhaps this is why Bambata sites, such as Toteng, cluster around Lake Ngami. This region is worthy of further investigation.

Benfica settlements in southern Africa remain elusive, although *Bambata B* pottery in rain-control contexts demonstrate their existence. The absorption of matrilineal Western Bantu (with root crops and caprines) by patrilineal Eastern Bantu (with cereal agriculture and cattle) must have left linguistic traces. Ceramically, the overall effect of the *Benfica* and *Bambata* styles are quite different from **Chifumbaze** facies. Because pottery is a metaphor in clay for women in the Bantu-speaking and related world (e.g. David et al. 1988), the different layout systems are probably related to different ways of seeing the female body. Cultural and linguistic impacts such as these, however, will be difficult to determine because neither Ziwa nor Silver Leaves have historic descendants. The impact on Shona remains for future research.

#### **ACKNOWLEDGEMENTS**

I thank Jan Boeyens, Bernard Clist and Gavin Whitelaw for comments on the manuscript. Nico Burelli reported the *Bambata* pottery on De Klundert and Wendy Voorvelt prepared the illustrations. Research was sponsored by the University of the Witwatersrand Research Incentive Scheme (HUFF0013). Opinions expressed here are not necessarily shared by these commentators or sponsor.

#### REFERENCES

Anciaux de Faveaux, E. & de Maret, P. 1984. Premières datations pour la fonte du cuivre au Shaba (Zaïre). Bulletin de la Société Royale Belge d'Anthropologie et de Préhistoire 95: 5–21.

Aschwanden, H. 1982. Symbols of life. Gweru: Mambo Press.

Blench, R. 2006. Archaeology, language, and the African past. Lanham, MD: Altamira Press.

- Bostoen, K. 2007. Pots, words and the Bantu problem: on lexical reconstruction and early African history. *Journal of African History* **48** (2): 173–99.
- Breton, G., Schlebusch, C., Lombard, M., Sjödin, P., Soodyall, H. & Jacobsson, M. 2014. Lactase persistence alleles reveal partial East African ancestry of southern African Khoe pastoralists. *Current Biology* **24** (8): 852–8.
- Chami, F.A.1998. A review of Swahili archaeology. African Archaeological Review 15 (3): 198–218.
- Clist, B. 1982. Etude archéologique du matériel de la mission Maurits Bequaert de 1950–1952 au Bas-Zaïre (2 volumes). MA thesis, Université Libre de Bruxelles.
- Clist, B., de Maret, P. & Bostoen, K. 2018. Les débuts de la céramique, de la sédentarisation et de la métallurgie du fer. In B. Clist, P. de Maret & K. Bostoen (eds.), Une Archéologie des Provinces Septentrionales du Royaume Kongo. Oxford: Archaeopress, pp. 45–50.
- Clist, B., Hubau, W., Tshibamba, J.M., Beckman, H. & Bostoen, K. 2019. The earliest iron-producing communities in the Lower Congo region of Central Africa: new insights from the Bu, Kindu and Mantsetsi sites. Azania: Archaeological Research in Africa 54 (2): 221–44.
- Clist, B., Kaumba, M., Matonda, I. & Bostoen, K. 2019. Kitala ware: a new Early Iron Age pottery group from the Lower Congo region of Central Africa. *African Archaeological Review* **36** (4): 455–77.
- Collett, D. & Robertshaw, P. 1983. Pottery traditions of early pastoral communities in Kenya. *Azania* 18: 107–25.
- David, N., Sterner, J. & Gavua, K. 1988. Why pots are decorated. Current Anthropology 29 (3): 365–89.
- de Maret, P. 1972. Etude d'une collection de céramiques protohistoriques du Bas-Zaïre (4 volumes). MA thesis, Université Libre de Bruxelles.
- de Maret, P. 1982. The Iron Age in the west and south. In F. van Noten (ed.), *The archaeology of Central Africa*. Graz: Akademische Druck- und Verlagsanstalt, pp. 77–96.
- de Maret, P. 1986. The Ngovo Group: an industry with polished stone tools and pottery in lower Zaïre. African Archaeological Review 4 (1): 103–33.
- de Maret, P. 1990. Le 'néolithique' et l'âge du fer ancien dans le sud-ouest de l'Afrique Centrale. In R. Lanfranchi & D. Schwartz (eds), *Paysages quaternaires de l'Afrique Centrale Atlantique*. Paris: ORSTOM, pp. 447–57.
- de Sousa Martins, R. 1976. A estação arqueológica da antiga Banza Quibaxe, Dembos-Angola. *Contribuições para o Estudo da Antropologia Portuguesa* **9** (4): 244–306.
- Denbow, J.R. 1990. Congo to Kalahari: data and hypotheses about the political economy of the western stream of the Early Iron Age. *African Archaeological Review* 8 (1): 139–76.
- Denbow, J. 2011. Excavations at Divuyu, Tsodilo Hills. Botswana Notes and Records 43: 76-94.
- Denbow, J.R. 2014. The archaeology and ethnography of Central Africa. New York: Cambridge University Press. Denbow, J.R. & Wilmsen, E.M. 1986. Advent and course of pastoralism in the Kalahari. Science 234
- Denbow, J.R. & Wilmsen, E.M. 1986. Advent and course of pastoralism in the Kalahari. *Science* 234 (4783): 1509–15.
- dos Santos Júnior, J.R. & Ervedosa, C.M.N. 1970. A estação arqueológica de Benfica, Luanda-Angola. Ciencias Biológicas (Luanda) 1 (1): 31–51.
- Dowson, T.A. 1998. Rain in Bushman belief, politics and history: the rock-art of rain-making in the south-eastern mountains, southern Africa. In C. Chippindale & P.S.C. Taçon (eds), *The archaeology of rock art.* Cambridge: Cambridge University Press, pp. 73–89.
- Ehret, C. 2001. Bantu expansions: re-envisioning a central problem of early African history. *International Journal of African Historical Studies* **34** (1): 5–41.
- Fourie, W. 2012. Namoya gold project. Northern part of Maniema Province in the eastern Democratic Republic of Congo (DRC). Heritage Impact Report prepared for SLR Consulting (Africa) Pty Ltd. Pretoria: PGS Heritage and Grave Relocation Consultants.
- Fouché, L. (ed.) 1937. Mapungubwe: ancient Bantu civilization on the Limpopo. Cambridge: Cambridge University Press.
- Grollemund, R., Branford, S., Bostoen, K., Meade, A., Venditti, C. & Pagel, M. 2015. Bantu expansion shows that habitat alters the route and pace of human dispersals. *Proceedings National Academy of Science B* 112 (43): 13296–301.
- Guthrie, M. 1967-71. Comparative Bantu. 4 volumes. Farnborough: Gregg International Press.
- Herbert, R.K. & Huffman, T.N. 1993. A new perspective on Bantu expansion and classification: linguistic and archaeological evidence fifty years after Doke. *African Studies* **52** (2): 53–76.

Hogg, A.C., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S.M., Southon, J., Bayliss, A., Blackwell, P.G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R. & Wacker, L. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62 (4): 759–78.

Huffman, T.N. 1974. The Leopard's Kopje Tradition. Museum Memoir 6. Salisbury: National Museums and Monuments.

Huffman, T.N. 1975. Cattle from Mabveni. South African Archaeological Bulletin 30 (117-118): 23-4.

Huffman, T.N. 1978. The Iron Age of the Buhwa District, Rhodesia. Occasional Papers National Museums Rhodesia 4 (3A): 2–22.

Huffman, T.N. 1979. Test excavations at NaBa and Lanlory, Mashonaland. South African Archaeological Society Goodwin Series 3: 14–46.

Huffman, T.N. 1980. Ceramics, classification and Iron Age entities. African Studies 39 (2): 123-74.

Huffman, T.N. 1989. Iron Age migrations: the ceramic sequence in southern Zambia, excavations at Gundu and Ndonde. Johannesburg: Witwatersrand University Press.

Huffman, T.N. 1994. Toteng pottery and the origins of Bambata. Southern African Field Archaeology 3: 3–9.Huffman, T.N. 2005. The stylistic origins of Bambata and the spread of mixed farming in southern Africa. Southern African Humanities 17: 57–79.

Huffman, T.N. 2007. A handbook to the Iron Age: the archaeology of pre-colonial farming societies in southern Africa. Scottsville: University of KwaZulu-Natal Press.

Huffman T.N. 2009. A cultural proxy for drought: ritual burning in the Iron Age of southern Africa. *Journal of Archaeological Science* **36** (4): 991–1005.

Huffman, T.N. & Herbert, R.K. 1994-95. New perspectives on Eastern Bantu. Azania 29-30: 27-36.

Huffman, T.N., Manyanga, M., Tarduno, J.A. & Watkeys, M.K. 2018. The archaeological context of recent archaeomagnetic research in Zimbabwe. *Southern African Humanities* 31: 205–21.

Jolly, P. 1996. Symbiotic interactions between black farmers and southeastern San. Current Anthropology 37 (2): 277–306.

Kinahan, J. 2013. The acquisition of ceramics by hunter-gatherers on the middle Zambezi in the first and second millennium AD. *Journal of African Archaeology* 11 (2): 197–209.

Klapwijk, M. 1974. A preliminary report on pottery from the north-east Transvaal, South Africa. South African Archaeological Bulletin 29 (113–114): 19–23.

Kopytoff, I. 1989. The African frontier: the reproduction of traditional African societies. Bloomington: Indiana University Press.

Merriam, A.P. 1974. An African world: the Basongye village of Lupua Ngye. Bloomington: Indiana University Press.

Murimbika, M.T. 2006. Sacred powers and rituals of transformation: an ethnoarchaeological study of rainmaking rituals and agricultural productivity during the evolution of the Mapungubwe state, AD 1000 to AD 1300. PhD thesis, University of the Witwatersrand.

Murdock, G.P. 1959. Africa: its peoples and their culture history. New York: McGraw-Hill.

Phillipson, D.W. 1969. The Early Iron Age site at Kapwirimbwe, Lusaka. *Azania* 3: 1–19.

Phillipson, D.W. 1977. The later prehistory of Eastern and Southern Africa. London: Heinemann.

Phillipson, D.W. 1985. African archaeology. Cambridge: Cambridge University Press.

Plug, I. & Badenhorst, S. 2001. The distribution of macromammals in southern Africa over the past 30 000 years. Transvaal Museum Memoir No. 12. Pretoria: Transvaal Museum.

Robbins, L.H., Campbell, A.C., Murphy, M.L., Brook, G.A., Srivastava, P. & Badenhorst, S. 2005. The advent of herding in southern Africa: early AMS dates on domestic livestock from the Kalahari Desert. Current Anthropology 46 (4): 671–7.

Robertson, J.H. 2000. Early Iron Age archaeology in central Zambia. Azania 35: 147-82.

Robinson, K.R. 1961a. Zimbabwe pottery. Occasional Papers National Museum of Southern Rhodesia 3 (23A): 193–226.

Robinson, K.R. 1961b. An Early Iron Age site from the Chibi District, Southern Rhodesia. South African Archaeological Bulletin 16 (63): 75–102.

Robinson, K.R. 1966a. Bambata ware: its position in the Rhodesian Iron Age in the light of recent evidence. South African Archaeological Bulletin 21 (82): 81–5.

Robinson, K.R. 1966b. The Sinoia Caves, Lomagundi District, Rhodesia. Proceedings and Transactions of the Rhodesia Scientific Association 51: 131–55.

- Robinson, K.R. 1985. Dated Iron Age sites from the upper Umguza Valley 1982: their possible implications. South African Archaeological Bulletin 40 (141): 17–38.
- Rudner, J. 1968. Strandloper pottery from South and Southwest Africa. *Annals of the South African Museum* **49** (2): 441–663.
- Sadr, K. 2003. The Neolithic of southern Africa. Journal of African History 44 (2): 195–209.
- Sadr, K. & Smith, A.B. 1991. On ceramic variation in the southwestern Cape, South Africa. South African Archaeological Bulletin 46 (154): 107–14.
- Sadr, K. & Sampson, C.G. 2006. Through thick and thin: early pottery in southern Africa. Journal of African Archaeology 4 (2): 235–52.
- Schapera, I. 1971. Rainmaking rites of Tswana tribes. Leiden: Afrika-Studiecentrum.
- Schofield, J.F. 1941. A report on the pottery from Bambata Cave. South African Journal of Science 37 (2): 361–72.
- Smith, E.W. & Dale, A.M. 1920. The Ila-speaking peoples of Northern Rhodesia. 2 volumes. Reprint, 1968. New York: University Books.
- Stuiver, M. & Reimer, P.J. 1993. Extended <sup>14</sup>C radiocarbon data base and revised CALIB 3.0 <sup>14</sup>C age calibration program. Radiocarbon 35 (1): 215–30.
- Thornycroft, C.E. 1975. An Early Iron Age site in the Wedza District, Rhodesia. Rhodesian Prehistory 7 (14): 7–11.
- Valdeyron, N. & da Silva Domingos, S.L. 2012. Coquillages (beaucoup) et crustacés (un peu): l'économie des populations littorales de la baie de Luanda (Angola), du début de notre ère jusqu'à la période actuelle. In Fr.-X. Fauvelle-Aymar (ed.), *Palethnologie de l'Afrique*, *P@Jethnologie* 4: 111–42.
- Vogel, J. 1971. Kumadzulo: an Early Iron Age village site in southern Zambia. Lusaka: O.U.P. for National Museums of Zambia.
- Vogel, J.C. 2000. Radiocarbon dating of the Iron Age sequence in the Limpopo Valley. South African Archaeological Society Goodnin Series 8: 51–7.
- Walker, N.J. 1983. The significance of an early date for pottery and sheep in Zimbabwe. South African Archaeological Bulletin 38 (138): 88–92.
- Whitelaw, G. 2017. 'Only fatness will bring rain': agriculturist rainmaking and hunter-gatherers. *Southern African Humanities* **30**: 101–24.
- Wilmsen, E. 2011. Ngoma: an abridged review. Botswana Notes and Records 43: 95-114.